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Project Scientific Abstract 

The 2D-PRINTABLE project aims to integrate sustainable large-scale liquid exfoliation techniques with 

theoretical modelling to efficiently produce a wide range of new 2D materials (2DMs), including 

conducting, semiconducting, and insulating nanosheets. The focus includes developing the printing 

and liquid-phase deposition methods required to fabricate networks and multicomponent 

heterostructures, featuring layer-by-layer assembly of nanometer-thick 2DMs into ordered 

multilayers. The goal is to optimize these printed networks and heterostructures for digital systems, 

unlocking new properties and functionalities. The project also seeks to demonstrate various printed 

digital devices, including proof-of-principle, first-time demonstration of all-printed, all-nanosheet, 

heterostack light-emitting diodes (LEDs). In conclusion, 2D-PRINTABLE will prove 2D materials to be an 

indispensable material class in the field of printed electronics, capable of producing far-beyond-state-

of-the-art devices that can act as a platform for the next generation of printed digital applications. 
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Public summary 
 
We curated a database of novel 2D materials (2DMs) 
(https://www.materialscloud.org/discover/mc2d/) that can be exfoliated from known inorganic 
compounds and that now counts over 3,000 candidates. 

The database has been created using high-throughput, van der Waals density functional theory (DFT) 
calculations to find layered three-dimensional (3D) materials that can be easily exfoliated into 2DMs.  

The source databases are the Inorganic Crystal Structure Database (ICSD), the Crystallography Open 
Database (COD), and the Pauling File (MPDS). Overall, we considered 9,306 layered candidates, first 
performing a geometrical screening to allow a further selection of candidate materials, for which full 
first-principles calculations were performed. 

This portfolio of novel monolayers will empower the search for novel materials for the 2D-Printable 
project, with outstanding electronic or optical properties.  
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Abbreviations & Definitions  
 

Abbreviation Explanation 

2DM Two-dimensional materials 

DFT Density-functional theory 

MC2D Materials Cloud 2-dimensional Database 

Van der Waals vdW 

 
1 https://open-research-europe.ec.europa.eu/for-authors/data-guidelines#approvedrepositories  

https://mc2d.materialscloud.org/
https://open-research-europe.ec.europa.eu/for-authors/data-guidelines#approvedrepositories
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1 Introduction  
 

2DM provide novel opportunities to venture into largely unexplored regions of the materials 

properties space. On one hand, their ultimate thinness makes them extremely promising for 

applications in electronics (from field-effect transistors, where a reduced device size is beneficial to 

improve performance and reduce short-channel effects between contacts, to optoelectronics). On the 

other hand, the physical properties of monolayers often change dramatically from those of parent 3D 

materials, providing a new degree of freedom in the applications (from light-emission to spin 

manipulation) while also unveiling novel physics. Moreover, vdW heterostructures have recently 

emerged as an additional avenue to engineer novel properties by stacking 2DM in a specifically 

designed fashion. 

 

Fig. 1: out of ~900,000 experimentally known compounds, ~84,000 are stoichiometric and unique, and 

~9,300 appear layered. 

 

To date only a few dozens of 2DMs have been experimentally synthesised or exfoliated from 3D 

counterparts.  Progress in this area will be strongly accelerated by the availability of a broader portfolio 

of potential realistic 2DM. To illustrate this point, we can compare the current situation for known 3D 

crystals, for which the knowledge accumulated in the past century (both the crystal structure and the 

measured physical properties) has been collected in databases such as the Pauling file, the Inorganic 

Crystal Structure Database or the Crystallographic Open Database (these, combined, contain to date 

close to a million entries) (Fig. 1). So, here we present a curated database of novel 2DMs that can be 

exfoliated from experimentally known inorganic compounds. In our search, we start from geometric 

and bonding criteria to identify layered materials among the 3D compounds contained in the 

experimental databases, independently of the layers' shape, crystallographic orientation or 

embedding.  We then use first-principles vdW DFT simulations to validate these results. In particular, 

we compute the binding energy of all prospective layered structures and identify those that are held 

together by weak interactions and ready for mechanical or liquid-phase exfoliation, or, alternatively, 

directed growth. 
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2 Methods and core part of the report 
 

Fig. 2: the calculation of binding energies (vertical axis) and van der Waals character (horizontal axis) allow 

to cluster inorganic layered materials in three classes – not exfoliable, potentially exfoliable (maybe with 

electrochemical methods and ion insertion) and easily exfoliable – just like graphene or transition-metal 

dichalcogenides. 

 

In our work, all the properties of the investigated materials are computed at the DFT-PBE level. The 

only exceptions are binding energies, which are calculated using the DF2-C09 and the rVV10 vdW 

functionals. Binding energies are always computed in a non-magnetic reference configuration, both 

for the 3D parent (Fig. 2) and for exfoliated monolayers. We checked that including magnetism for 

magnetic systems does not alter the binding energy by more than 10 meV/Å2, and in most cases it does 

not alter the classification as easily exfoliable. The total and absolute magnetizations are defined, 

respectively, as Mtot=μB∫m(r)dr and Mabs=μB∫|m(r)|dr, where m(r)=n↑(r)−n↓(r) is the local 

magnetization and n↑(r)/n↓(r) are the densities of spin-up/down electrons. A system is labelled non-

magnetic (NM) if in the ground state Mtot=Mabs=0, while it is labelled anti-ferromagnetic (AF) if Mabs≠0 

and Mtot<0.1 μB. In all other cases the system is reported as ferromagnetic (FM).  Magnetic band 

structures are plotted with two different colours for the two different spin states. Paths and special k-

points follow the conventions for 2D systems from Ref. [1] as implemented in AiiDA [2]. All the 

structures, 3D and 2D, computed are treated as non-magnetic using spin-unpolarized DFT regardless 

of their true magnetic ground state, since the magnetic order has a negligible effect on the binding 

energies (caution is then needed when looking at the electronic properties of materials with element 

that might support a magnetic ground state – currently one PhD student in the project is working on 

identifying all the possible magnetic ground and excited states). 
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2.1 Data Analysis 
 

Fig. 3: landing page of the database of inorganic materials (https://mc2d.materialscloud.org/) that are 

layered and can be exfoliated, now containing more than 3000 inorganic compounds, of which 2000+ are 

easily exfoliable.  

 

All the materials properties that have been calculated are openly accessible to the entire scientific 

community through the MC2D (Materials Cloud 2-dimensional Database), as shown in Fig. 3. 

Properties that have been calculated are the theoretical geometries of the 3D parent and of the 2D 

exfoliated monolayer, and the exfoliation energies.  

https://mc2d.materialscloud.org/
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Fig. 4: the selection of a material (here, hexagonal boron nitride) provides core information: symmetry 

properties, magnetization, band gap, and especially binding energy. 

 

Work is continuously in progress to add more properties – total and absolute magnetization, electronic 

band structure, and phonon dispersions, as shown in Figs. 4, 5 and 6. 

 

Fig. 5: whenever available, the electronic band structure and the phonon dispersions are also displayed. The 

user can probe and visualize interactively individual phonon modes. 

Fig. 6: the geometries of the 2DM (monolayer) are presented, together with the link to the data for the 3D 

parent (often contained in proprietary databases); the AiiDA directed acyclic graph recording the 

provenance of the entire simulation workflow can be browsed graphically (left panel) or downloaded in its 
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entirety from the Materials Cloud Archive (an open-access resource, recommended by the European 

Commission through Open Research Europe for the storage of materials data2). 

 

Table 1: list of materials easily exfoliable into monolayers (containing 6 atoms or less in the unit cell) that 

are optimal lattice matched pairs with graphene.  

 

 
2 https://open-research-europe.ec.europa.eu/for-authors/data-guidelines#approvedrepositories  

https://open-research-europe.ec.europa.eu/for-authors/data-guidelines#approvedrepositories
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Table 2: list of materials easily exfoliable into monolayers (containing 6 atoms or less in the unit cell) that 

are optimal lattice matched pairs with hexagonal boron nitride. 
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3 Results & Discussion 
 

3.1 Results 
 

We have curated the data of a portfolio of 3000+ monolayers [4], that provides the starting point to 

calculated more complex materials properties, such as mobilities or optical absorption or emission, 

that are currently in progress.  

 

3.2 Contribution to project (linked) Objectives  
 

This deliverable contributed directly to the objective of combining “theoretical modelling, crystal 

growth and large-scale liquid-exfoliation, to scalably produce >20 new 2DM, including conducting, 

semiconducting and insulating nanosheets, with targeted properties”. 

 

3.3 Contribution to major project exploitable result  
 
This deliverable underpins the experimental efforts that are ongoing in 2D-Printable to identify novel 
2DM that can be incorporated in next-generation printed electronic devices.  
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4 Conclusion and Recommendation 
 

A very extensive portfolio of 2DMs has been identified theoretically; for these, the most pressing 

needs are the calculation of optoelectronic properties (starting from the direct band gaps), currently 

in progress, and of mechanical properties and bending rigidities. 

 

Calculation of direct/indirect band gaps requires in principle very extensive (and expensive) sampling 

of the Brillouin zone, for which we have recently developed very accurate Wannier interpolation 

techniques. Work is very advanced, and in the next 2-3 months we’ll be able to release all the band 

structures and direct/indirect band gap of ~2000+ easily exfoliable materials. 

 

Fig. 7: maximally localized Wannier function for monolayer MoS2, perfectly interpolating the DFT data and 

allowing to identify with great precision maxima and minima in the band edges. 
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5 Risks and interconnections 
 

5.1 Risks/problems encountered 
 

The risks are related to the accuracy (or lack thereof) of DFT simulations – binding energies have very 

moderate errors, of 10-20%, but band gaps are always underestimated (by a factor of 2), whereas 

much more expensive many-body perturbation theory/GW calculations should be performed for few, 

selected most promising candidates. 

 

5.2 Interconnections with other deliverables 
 

D1.2 underpins the calculations of D1.4 and D1.6, bur especially the experimental efforts in D4.1 and 

D4.2 
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6 Deviations from Annex 1 
 

No deviations. 
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